Additive Fertigung

Andreas Mühlbauer,

Testverfahren im Test

Im Vergleich erkennen Neutronen die meisten Defekte in additiv gefertigten Bauteilen.

Mithilfe von Lasern bringen die Forschenden des Heinz Maier-Leibnitz Zentrums (MLZ) das Neutronen-Gitterinterferometer im Instrument Antares in der Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) der Technischen Universität München in die richtige Position. © Bernhard Ludewig / FRM II / TUM

Bei der Herstellung von Turbinen stoßen herkömmliche Verfahren oft an ihre Grenzen. Komplexe Bauteile mit filigranen Strukturen und geschwungene Formen werden daher immer häufiger durch die Additive Fertigung hergestellt. Um Defekte im Bauteilinneren zu finden, sind verschiedene Testverfahren im Einsatz. Ein Forschungsteam der Technischen Universität München (TUM) hat nun mehrere Verfahren geprüft. Die beste Fehlererkennung erzielten dabei Neutronen der Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II).

Das Laser-Strahlschmelzen ist ein gängiges additives Fertigungsverfahren für Turbinenschaufeln mit Kühlkanälen im Inneren. Dabei schmilzt ein Laser eine dünne Lage Metallpulver an bestimmten Stellen auf. Schicht für Schicht entsteht so das Bauteil in einem Bett aus Pulver. Wie bei einer archäologischen Ausgrabung wird das Bauteil anschließend freigelegt, und das übrige Pulver kann für das nächste Bauteil wiederverwendet werden.

Doch Prozess-Instabilitäten können zu Defekten im Bauteil führen und so die Festigkeit des Bauteils mindern. Typische Defekte sind Poren und Risse. Einzelne Schichten können sich sogar teilweise oder ganz voneinander lösen.

Bei sicherheitsrelevanten Bauteilen, wie der Turbinenschaufel, können solche Defekte schwerwiegende Folgen haben. „Kritische Bauteile müssen wir daher nach dem Herstellungsprozess untersuchen – und das natürlich zerstörungsfrei“, erklärt Cara Kolb vom Institut für Werkzeugmaschinen und Betriebswissenschaften der TUM.

Anzeige

Ein Blick ins Innere

Für ihre Versuche stellten die Forschenden Prüfkörper mit Defekten verschiedener Größe und Tiefenlage her und versuchten, diese mit zerstörungsfreien Prüfverfahren zu detektieren. Zum Einsatz kamen dabei die Aktive Infrarot-Thermografie (engl. active infrared thermography, aIRT), Ultraschall (engl. ultrasonic testing, UT), die Röntgen-Computertomographie (engl. X-ray computed tomography, CT) und die Neutronen-Gitterinterferometrie (engl. neutron grating interferometry, nGI).

An der Forschungs-Neutronenquelle führte der Doktorand Tobias Neuwirth die Untersuchungen am Instrument ANTARES durch. „Wir testen Bauteile mit Neutronengitterinterferometrie. Dabei beobachten wir ortsaufgelöst die Streuung und Absorption von Neutronen. Ändert sich diese, gibt das Aufschluss über die Art und die Größe der Defekte“, erklärt er.

Tieferes Eindringen und bessere Auflösung mit Neutronen

Jedes der getesteten Verfahren hat seine Potentiale und Herausforderungen. Neutronengitterinterferometrie ist zwar aufwendig und teurer als die anderen untersuchten Testverfahren, allerdings entdeckt es von allen Verfahren die meisten und die kleinsten Defekte.

„Neutronen können tief in den Werkstoff eindringen und ermöglichen eine hohe Auflösung der inneren Bauteilstruktur. Besonders gut eignen sie sich für Nickelbasislegierungen, die enorm wichtig sind für die Additive Fertigung von Luft- und Raumfahrtstrukturkomponenten“, lautet das Fazit von Cara Kolb.

Die Forschung an Testverfahren, die die Qualität additiv gefertigter Bauteile zerstörungsfrei absichern, ist sehr wichtig. Solche Testverfahren sagen aus, wie wahrscheinlich ein Bauteil im Betrieb versagt. Und mit zunehmendem Einsatz von Additiver Fertigung beispielsweise in Flugzeugen oder Autos, gewinnen auch die Testverfahren an Bedeutung.

Anzeige

Das könnte Sie auch interessieren

Anzeige

Bauteilauslegung

3D-Druck für Verbindungslösungen

3D-Druck ist eine Fertigungstechnologie, die eine zuvor ungekannte Flexibilität für die geometrische Bauteilauslegung bietet und Lieferzeiten deutlich verkürzt. Auch im Bereich von Verbindungslösungen bietet die additive Fertigung weitreichende...

mehr...
Anzeige
Anzeige

3D-Druck

STL- und Scan-Daten reparieren

Mit der neuesten Version der 3D-Printing-Software 4D_Additive von CoreTechnologie lassen sich 3D-Scandaten und andere STL-Dateien mit einer sogenannten „Marching Cube“-Funktion in kürzester Zeit in geschlossene Volumenkörper verwandeln und...

mehr...
Anzeige

Additive Fertigung

Mobile Produktion vor Ort

Drei Unternehmen haben gemeinsam eine mobile Produktionsanlage entwickelt, die additive und subtraktive Bearbeitung mit höchster Präzision an fast jedem Ort der Erde ermöglicht. Kernstück ist die additive Fertigung per Drahtauftragsschweißen.

mehr...
Anzeige
Anzeige
Anzeige